๐Ÿ“š ์„ธํ˜„'s Vault

๐ŸŒ ๋„๋ฉ”์ธ

  • ๐Ÿ”ฎ3D-Vision
  • ๐ŸŽจRendering
  • ๐Ÿค–Robotics
  • ๐Ÿง LLM
  • ๐Ÿ‘๏ธVLM
  • ๐ŸŽฌGenAI
  • ๐ŸฅฝXR
  • ๐ŸŽฎSimulation
  • ๐Ÿ› ๏ธDev-Tools
  • ๐Ÿ’ฐCrypto
  • ๐Ÿ“ˆFinance
  • ๐Ÿ“‹Productivity
  • ๐Ÿ“ฆ๊ธฐํƒ€

๐Ÿ“„ Papers

  • ๐Ÿ“š์ „์ฒด ๋…ผ๋ฌธ172
Home

โฏ

bookmarks

โฏ

Bringing foundation models to depth sensing: DeFM is trained on 60M depth images with self supervised learning to captur

Bringing foundation models to depth sensing: DeFM is trained on 60M depth images with self-supervised learning to captur

2026๋…„ 1์›” 28์ผ1 min read

  • 3D-Vision
  • compression

Robots Digest ๐Ÿค– (@robotsdigest)

2026-01-28 | โค๏ธ 212 | ๐Ÿ” 28


Bringing foundation models to depth sensing: DeFM is trained on 60M depth images with self-supervised learning to capture geometry and semantics, preserve metric awareness, distill into compact models, and set SOTA in sim-to-real robotics. https://t.co/v6cpJhftCh

๋ฏธ๋””์–ด

video thumbnail


Tags

3D-Vision compression


๊ทธ๋ž˜ํ”„ ๋ทฐ

  • Robots Digest ๐Ÿค– (@robotsdigest)
  • ๋ฏธ๋””์–ด
  • Tags

Created with Quartz v4.5.2 ยฉ 2026

  • GitHub
  • Sehyeon Park